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Abstract 

A study is presented of Michael Berry's observation of quantum mechanical systems 

transported along a closed, adiabatic path.  In this case, a topological phase factor arises along 

with the dynamical phase factor predicted by the adiabatic theorem. 

1 Introduction 

In 1984, Michael Berry pointed out a feature of quantum mechanics (known as Berry's Phase) 

that had been overlooked for 60 years at that time.  In retrospect, it seems astonishing that this 

result escaped notice for so long.   It is most likely because our classical preconceptions can 

often be misleading in quantum mechanics.   After all, we are accustomed to thinking that the 

phases of a wave functions are somewhat arbitrary.  Physical quantities will involve  Ψ 2 so the 

phase factors cancel out.  It was Berry's insight that if you move the Hamiltonian around a 

closed, adiabatic loop, the relative phase at the beginning and at the end of the process is not 

arbitrary, and can be determined. 

 There is a good, classical analogy used to develop the notion of an adiabatic transport 

that uses something like a Foucault pendulum.  Or rather a pendulum whose support is moved 

about a loop on the surface of the Earth to return it to its exact initial state or one parallel to it.  

For the process to be adiabatic, the support must move slow and steady along its path and the 



period of oscillation for the pendulum must be much smaller than that of the Earth's.   

Adiabatic Theorem says that if a system begins a time t, in an instantaneous eigenstate 

𝜓𝑛 𝑥, 𝑡 , then all later times will remain in that same eigenstate, but develop phase factors.  It's 

easy enough to state this theorem.  It even seems plausible.  But for good practice, we'll prove 

it, observe how the two types of phase factors emerge and study Berry's phase.   

 

2 Quantum Adiabatic Theorem 

If the Hamiltonian is time-dependent, then so are the eigenfunctions and eigenvalues: 

    𝐻 𝑡 𝜓𝑛 𝑡 = 𝐸𝑛(𝑡)𝜓𝑛 𝑡                                   (1) 

However, at any particular instant, they still constitute a complete, orthonormal set so 

 𝜓𝑛 𝑡  𝜓𝑚  𝑡  = 𝛿𝑛𝑚 ,  and the general solution to the time-dependent Schrodinger equation 

can be expressed as a linear combination of them: 

                 𝜓𝑛 𝑡 =  𝑐𝑛(𝑡)𝜓𝑛 𝑡 𝑒𝑖𝜃𝑛 (𝑡)
𝑛                                                     (2) 

Where the phase factor 𝜃𝑛 𝑡 ≡ −
1

ℏ
 𝐸𝑛 𝑡′ 𝑑𝑡′

𝑡

0
. 

Substituting equation (2) into the time-dependent Schrodinger equation we have: 

              𝑖ℏ  (𝑐 𝑛𝜓𝑛 + 𝑐𝑛𝜓 
𝑛 + 𝑖𝑐𝑛𝜓𝑛𝜃 

𝑛 )𝑒𝑖𝜃𝑛
𝑛 =  𝑐𝑛(𝐻𝜓𝑛 )𝑒𝑖𝜃𝑛

𝑛       (3) 



From equation (1), the last two terms cancel leaving  𝑐 𝑛𝜓𝑛𝑒𝑖𝜃𝑛 = −  𝑐𝑛𝜓 
𝑛𝑒𝑖𝜃𝑛 .  Invoking 

orthonormality and taking the inner product with 𝜓𝑚  we 

obtain  𝑐 𝑛𝛿𝑚𝑛 𝑒𝑖𝜃𝑛 = −  𝑐𝑛 𝜓𝑚  𝜓 
𝑛 𝑒𝑖𝜃𝑛    or: 

                                 𝑐 𝑚 𝑡 = −  𝑐𝑛 𝜓𝑚  𝜓 
𝑛 𝑛 𝑒𝑖(𝜃𝑛 −𝜃𝑚 )                                   (4) 

Taking the time derivative of equation (1) and again the inner product with 𝜓𝑚  yields 

 𝜓𝑚  𝐻  𝜓𝑛  +  𝜓𝑚  𝐻 𝜓 
𝑛 = 𝐸 

𝑛𝛿𝑚𝑛 + 𝐸𝑛 𝜓𝑚  𝜓 
𝑛 .  So Now, if we exploit the hermiticity of H so 

that  𝜓𝑚  𝐻 𝜓 
𝑛 = 𝐸𝑚  𝜓𝑚  𝜓 

𝑛 , then: 

                      𝜓𝑚  𝐻  𝜓𝑛 = (𝐸𝑛 − 𝐸𝑚 ) 𝜓𝑚  𝜓 
𝑛                                                    (5) 

for 𝑛 ≠ 𝑚. 

Plugging this all into equation (4), we find that: 

                               𝑐 𝑚 𝑡 = −𝑐𝑚  𝜓𝑚  𝜓 
𝑚  −  𝑐𝑛

 𝜓𝑚  𝐻  𝜓𝑛  

𝐸𝑛 −𝐸𝑚
𝑛 𝑒𝑖 𝜃𝑛 −𝜃𝑚                                  (6) 

Next, we can apply the adiabatic approximation which is simply to assume that 𝐻  is very, very 

small and so we can drop off the last term completely.  And we are left with just 𝑐 𝑚 𝑡 =

−𝑐𝑚  𝜓𝑚  𝜓 
𝑚   which has the solution: 

                           𝑐𝑚 𝑡 = 𝑐𝑚 (0)𝑒𝑖𝛾𝑚 (𝑡)                                                             (7) 

Where 𝛾𝑚 (𝑡) ≡ 𝑖   𝜓𝑚 (𝑡′ ) 𝜓 
𝑚 (𝑡′ ) 𝑑𝑡′𝑡

0
.  



Therefore, if 𝑐𝑛 0 = 1, and 𝑐𝑚 0 = 0 (𝑚 ≠ 𝑛), then the particle remains in the nth 

eigenstate of the time-evolving Hamiltonian, only picking up phase factors along the way.  And 

equation (2) is: 

         Ψ𝑛 𝑡 = 𝑒𝑖𝜃𝑛  𝑡 𝑒𝑖𝛾𝑛  𝑡 𝜓𝑛 (𝑡)                                                   (8) 

The phase factor, 𝜃𝑛 𝑡  is commonly referred to as the "dynamic phase".  And 𝛾𝑛 𝑡  is the so-

called "geometric phase".   

3 Geometric  Phase 

Consider that 𝜓𝑛 (𝑡) is time-dependent due to some parameter of the Hamiltonian that is 

changing with time.  Say, for example, the width of an expanding, square well R(t).  Thus 

𝜕𝜓𝑛

𝜕𝑡
=

𝜕𝜓𝑛

𝜕𝑅𝑛

𝑑𝑅

𝑑𝑡
.   Here, the geometric phase would look something like: 

             𝛾𝑛 𝑡 = 𝑖   𝜓𝑛  
𝜕𝜓𝑛

𝜕𝑅
 

𝑅𝑓

𝑅𝑖
𝑑𝑅                                                        (9) 

Where 𝑅𝑖  and 𝑅𝑓  are the initial and final values for R(t).  And if the Hamiltonian returns to its 

original form so that 𝑅𝑖 = 𝑅𝑓 , then the geometric phase would equal zero and there really isn't 

much to see.  But now, let's consider there being multiple, changing parameters (Rs) so that 

there are at least two dimensions changing in our expanding, square well.  In this case, we 

have: 

     
𝜕𝜓𝑛

𝜕𝑡
= (∇R𝜓𝑛) ⋅

𝑑𝑹

𝑑𝑡
                                                           (10) 



Where 𝑹 ≡  𝑅1, 𝑅2, … , 𝑅𝑁  and ∇𝑅 is the gradient with respect to each time-dependent 

parameter.  Now, for the geometric phase, equation (9) becomes 𝛾𝑛 𝑡 = 𝑖   𝜓𝑛  ∇R𝜓𝑛 
𝑅𝑓

𝑅𝑖
⋅ 𝑑𝑹 

and if the Hamiltonian now returns to its original form, the total geometric phase change is 

represented by a line integral around a closed loop. 

                                                             𝛾𝑛 𝑇 = 𝑖   𝜓𝑛  ∇R𝜓𝑛  ⋅ 𝑑𝑹                                                   (11) 

And is not always zero.  This equation was first obtained in 1984 by Michael Berry and it is what 

is known as "Berry's phase".  You can see that Berry's phase only depends on the path taken 

and not the velocity around the path.  On the other hand, dynamic phase depends very much 

on elapsed time.   

4 Conclusion 

Aharonov-Bohm is another well-known instance of where our classical preconceptions are 

misleading.  Interestingly, Berry's formula can confirm the Aharonov-Bohm result and reveals 

that the effect is in fact a particular instance of geometric phase.  Another physically relevant 

and rather simple case is any of which the eigensystem of a real Hamiltonian operator H 

depending on a set of external parameters q. The eigenstates of a real operator may always be 

chosen to be real, at any q-point.  It is straightforward to check that continuous real eigenstates 

realize parallel transport. In the real case, it is therefore easy to get rid of complex phases 

coming from the time evolution. 

 


